User:RE Boss/Power Set
Since Power Set is immutable, this copy was made.
A set s can be represented as an array whose items are its members. The power set of s is the set of all subsets of s . For example:
ps 0 1 2 ┌┬─┬─┬───┬─┬───┬───┬─────┐ ││2│1│1 2│0│0 2│0 1│0 1 2│ └┴─┴─┴───┴─┴───┴───┴─────┘ ps 3 4$'zeroone two ' ┌────┬────┬────┬────┬────┬────┬────┬────┐ │ │two │one │one │zero│zero│zero│zero│ │ │ │ │two │ │two │one │one │ │ │ │ │ │ │ │ │two │ └────┴────┴────┴────┴────┴────┴────┴────┘ ps ;:'red green blue' ┌┬──────┬───────┬────────────┬─────┬──────────┬───────────┬────────────────┐ ││┌────┐│┌─────┐│┌─────┬────┐│┌───┐│┌───┬────┐│┌───┬─────┐│┌───┬─────┬────┐│ │││blue│││green│││green│blue│││red│││red│blue│││red│green│││red│green│blue││ ││└────┘│└─────┘│└─────┴────┘│└───┘│└───┴────┘│└───┴─────┘│└───┴─────┴────┘│ └┴──────┴───────┴────────────┴─────┴──────────┴───────────┴────────────────┘
The power set can be computed in several different ways.
Copy
The monad #: computes the binary representation; the power set obtains readily using the dyad # on the table of binary representations of i.2^#s and s itself. Thus:
s=: 0 1 2 ] b=: #:i.2^#s 0 0 0 0 0 1 0 1 0 0 1 1 1 0 0 1 0 1 1 1 0 1 1 1 b <@#"1 _ s ┌┬─┬─┬───┬─┬───┬───┬─────┐ ││2│1│1 2│0│0 2│0 1│0 1 2│ └┴─┴─┴───┴─┴───┴───┴─────┘ ps0=: #:@i.@(2&^)@# <@#"1 _ ]
Recursion
If t is the power set of }.s , then the power set of s obtains as t,({.s),&.>t . Hence:
ps1a=: 3 : 'if. 0=#y do. ,<0#y else. (<{.y) (],,&.>) ps1a }.y end.' ps1b=: ,@<@(0&#) ` (<@{. (],,&.>) $:@}.) @. (0<#)
Insert
2 (],,&.>) a: ┌┬─┐ ││2│ └┴─┘ 1 (],,&.>) 2 (],,&.>) a: ┌┬─┬─┬───┐ ││2│1│1 2│ └┴─┴─┴───┘ 0 (],,&.>) 1 (],,&.>) 2 (],,&.>) a: ┌┬─┬─┬───┬─┬───┬───┬─────┐ ││2│1│1 2│0│0 2│0 1│0 1 2│ └┴─┴─┴───┴─┴───┴───┴─────┘
The power set obtains by extending the empty set by _1{s , then extending the result of that by _2{s , then extending the result of that by _3{s , and so on. Thus:
ps2=: , @ ((],,&.>)/) @ (<"_1 , <@(0&#))
Combinations
The subsets can be grouped by size from 0 to #s and this grouped representation can be computed using Combinations.
comb=: 4 : 0 NB. All size x combinations of i.y k=. i.>:d=.y-x z=. (d$<i.0 0),<i.1 0 for. i.x do. z=. k ,.&.> ,&.>/\. >:&.> z end. ; z ) 0 1 2 3 4 comb&.> 4 ┌┬─┬───┬─────┬───────┐ ││0│0 1│0 1 2│0 1 2 3│ ││1│0 2│0 1 3│ │ ││2│0 3│0 2 3│ │ ││3│1 2│1 2 3│ │ ││ │1 3│ │ │ ││ │2 3│ │ │ └┴─┴───┴─────┴───────┘ (0 1 2 3 4 comb&.> 4) {&.> <'abcd' ┌┬─┬──┬───┬────┐ ││a│ab│abc│abcd│ ││b│ac│abd│ │ ││c│ad│acd│ │ ││d│bc│bcd│ │ ││ │bd│ │ │ ││ │cd│ │ │ └┴─┴──┴───┴────┘ ps3=: (i.@>:@# comb&.> #) {&.> <@]
Another possibility is applying one of the comb verbs and keeping the intermediate results, as the following explains.
Here the last combination calculated is 3 comb 5 , and the former results are kept.
++-+---+-------------------+ ||0|0 1|+-----+-----+-----+| ||1|0 2||0 1 2|1 2 3|2 3 4|| ||2|0 3||0 1 3|1 2 4| || ||3|0 4||0 1 4|1 3 4| || ||4|1 2||0 2 3| | || || |1 3||0 2 4| | || || |1 4||0 3 4| | || || |2 3|+-----+-----+-----+| || |2 4| | || |3 4| | ++-+---+-------------------+
So, based on comb2 in Combinations, we get
ps4=: 3 : '(}:,;&.>@{:) (}:, [:({.,<@(i.@#,.&.>])@}.)[:,&.>/\.>@{:)^:y(y$<i.0 0)<@,<i.1 0' ps4a=: ([:ps4 #) {&.> < NB. for nouns which are not an integer atom.
Collected Definitions
ps0 =: #:@i.@(2&^)@# <@#"1 _ ] ps1a=: 3 : 'if. 0=#y do. ,<0#y else. (<{.y) (],,&.>) ps1a }.y end.' ps1b=: ,@<@(0&#) ` (<@{. (],,&.>) $:@}.) @. (0<#) ps2 =: , @ ((],,&.>)/) @ (<"_1 , <@(0&#)) ps3 =: (i.@>:@# comb&.> #) {&.> <@] ps4=: 3 : '(}:,;&.>@{:) (}:, [:({.,<@(i.@#,.&.>])@}.)[:,&.>/\.>@{:)^:y(y$<i.0 0)<@,<i.1 0' ps4a=: ([:ps4 #) {&.> < NB. for nouns which are not an integer atom. comb=: 4 : 0 NB. All size x combinations of i.y k=. i.>:d=.y-x z=. (d$<i.0 0),<i.1 0 for. i.x do. z=. k ,.&.> ,&.>/\. >:&.> z end. ; z )
Relative performance on i.20
place rlprf rlt rls verbs 5 38.09 9.25 4.12 ps0 3 19.48 8.03 2.43 ps1a 2 16.96 7.00 2.42 ps1b 4 21.56 8.89 2.42 ps2 1 6.96 2.73 2.55 ps3 0 1.00 1.00 1.00 ps4a
Contributed by Roger Hui. An earlier version of the text appeared in the
J Forum
on 2007-08-13.
ps4 and relative perfomance was added by RE Boss.