Email: <<MailTo(kilpatrick AT acm DOT org)>>
{
k a p p a := 0 ; f o r i := 0 s t e p 1 u n t i l n − 1 d o d [ i ] := 0 ; {\displaystyle {\mathit {kappa}}:=0;\ \mathrm {for} \ i:=0\ \mathrm {step} \ 1\ \mathrm {until} \ n-1\ \mathrm {do} \ d[i]:=0;}
}
f o r i := 0 s t e p 1 u n t i l n − 1 d o {\displaystyle \mathrm {for} \ i:=0\ \mathrm {step} \ 1\ \mathrm {until} \ n-1\ \mathrm {do} }
b e g i n d [ i ] := 1 {\displaystyle \mathrm {begin} \ d[i]:=1}
i f i ≥ 1 t h e n d [ i − 1 ] := 0 ; {\displaystyle \mathrm {if} \ i\geq 1\ \mathrm {then} \ d[i-1]:=0;}
l i n p r o g ( m , n , k a p p a , G , b , d , x , z , i n d , i n f e a s , u n b d d , s i n g ) ; {\displaystyle {\mathit {linprog}}(m,n,{\mathit {kappa}},G,b,d,x,z,{\mathit {ind}},{\mathit {infeas}},{\mathit {unbdd}},{\mathit {sing}});}
u p p e r b o u n d [ i ] := z ; {\displaystyle {\mathit {upper}}\ {\mathit {bound}}[i]:=z;}
e n d ; {\displaystyle \mathrm {end} ;}