Help / Phrases / 9. B. Linear Vector Functions
< Help
Jump to navigation
Jump to search
>> << Pri JfC LJ Phr Dic Voc !: Rel NuVoc wd Help Phrases
9B. Linear Vector Functions
If f(x+y)equals (f x)+(f y) for all vectors x and y in its domain, then f is said to be a linear vector function. In other words, f@:+ -: +&:f is a test for the linearity of f:
f=: +/\"1 NB. Sum scan (subtotals) is a linear vector function x=: 4 3 2 1 0 y=: 2 3 5 7 11 x ([ , ] , f@[ , f@] , +&:f ,: f@:+) y 4 3 2 1 0 x 2 3 5 7 11 y 4 7 9 10 10 f x 2 5 10 17 28 f y 6 12 19 27 38 (f x)+(f y) 6 12 19 27 38 f (x+y)
For vector arguments of dimension n, any linear vector function f can be expressed as a matrix product, using a matrix obtained by applying f to the identity matrix of order n. Moreover, the inverse of a linear function is a linear function. For example:
g=: f^:_1 NB. Inverse of subtotals is first differences (] ; f ; g ; f@g) y ┌──────────┬────────────┬─────────┬──────────┐ │2 3 5 7 11│2 5 10 17 28│2 1 2 2 4│2 3 5 7 11│ └──────────┴────────────┴─────────┴──────────┘ I=: = i. 5 NB. Identity matrix mf=: (f I) [ mg=: (g I) mp=: +/ . * NB. Matrix product mf ; mg ; (y,(y mp mf),:f y) ; (mf mp mg) ┌─────────┬─────────────┬────────────┬─────────┐ │1 1 1 1 1│1 _1 0 0 0│2 3 5 7 11│1 0 0 0 0│ │0 1 1 1 1│0 1 _1 0 0│2 5 10 17 28│0 1 0 0 0│ │0 0 1 1 1│0 0 1 _1 0│2 5 10 17 28│0 0 1 0 0│ │0 0 0 1 1│0 0 0 1 _1│ │0 0 0 1 0│ │0 0 0 0 1│0 0 0 0 1│ │0 0 0 0 1│ └─────────┴─────────────┴────────────┴─────────┘
a0=: MR=: ]:@=@i.@# | Matrix representation of linear function |
d1=: mp=: +/ . * | Matrix product |
a2=: L=: &mp | Linear function represented by matrix |
a3=: inv=: ^:_1 | Inverse adverb |
a4=: MRI=: inv 'MR' f. | Matrix representation of inverse function |
a5=: %.@MR | " |
m=: f MR y [ mi=: f MRI y m ; mi ; y,(y L m),:(mi L m L y) ┌─────────┬─────────────┬────────────┐ │1 1 1 1 1│1 _1 0 0 0│2 3 5 7 11│ │0 1 1 1 1│0 1 _1 0 0│2 5 10 17 28│ │0 0 1 1 1│0 0 1 _1 0│2 3 5 7 11│ │0 0 0 1 1│0 0 0 1 _1│ │ │0 0 0 0 1│0 0 0 0 1│ │ └─────────┴─────────────┴────────────┘