Essays/Sine
< Essays
Jump to navigation
Jump to search
Some ways of computing the sine of a number.
Primitive
The sine qua non of the various ways.
s0=: 1&o.
Exponential
s1a=: 0j2 %~ ^@j. - ^@-@j. s1b=: ^ .: - &.j.
Trigonometric Identities
s2a , s2b , and s2c implement, respectively, and and
s2a=: (0&o.) @ (2&o.) s2b=: */ @ (2 3&o.) s2c=: 5&o. &. j.
Derivative and Integral
s3a=: -@(2&o.) d. 1 s3b=: 2&o. d. _1
Power Series
s4a=: 2p1&|@] ([: -/ ^ % !@]) >:@:+:@:i.@[ s4b=: [`(! %~ 0 1 0 _1 {~ 4&|) t. T. _ 10 s4a 1 0.841471 1 o. 1 0.841471 10 s4a 1j2 3.16578j1.9596 1 o. 1j2 3.16578j1.9596 (1&o. = s4b) 0.1*i:5 1 1 1 1 1 1 1 1 1 1 1
Hypergeometric Series
The phrase '' H. 1.5 is limit of the the hypergeometric series with upper parameter the empty vector and lower parameter the number 1.5.
s5=: * '' H. 1.5@(%&_4)@*:
Infinite Product
From Abramowitz & Stegun 4.3.89 (converges slowly):
s6=: ] * */"1 @: -. @: *: @: (] % o.@>:@i.@[) 100 s6 1 0.84232 1 o. 1 0.841471 100 200 400 800 s6"0 ] 1j2 3.14831j1.9664 3.15702j1.96302 3.16139j1.96131 3.16358j1.96046 1 o. 1j2 3.16578j1.9596
Continued Fraction
From C.D. Olds, Continued Fractions, MAA New Mathematical Library, 1963, page 138.
s7=: 4 : 0 n=. x s=. *:y (%`+)/y,1,s, ,(p-s),.p*s [ p=. */"1] 2+i.n,2 ) 6 s7 0.5 0.479426 1 o. 0.5 0.479426 | (6&s7 - 1&o.) 0.5 3.88578e_15 [[Category:Syntax R.3.1.1]][[Category:Math R.3.2]][[Category:Functions and Sequences R.3.2.1]][[Category:NuVoc R.1]] 20 s7 1j2 3.16578j1.9596 1 o. 1j2 3.16578j1.9596 | (20&s7 - 1&o.) 1j2 6.28037e_16
See also
- Chi Squared CDF
- Normal CDF
- Pi (Chudnovsky Algorithm)
- Sine
- Square Root
- t-Distribution CDF
- Extended Precision Functions
Contributed by Roger Hui.