Essays/Christoffel/Christoffel02
< Essays | Christoffel
Jump to navigation
Jump to search
8 Metric Tensor (ISS Section 29)
8.1 General (3 dimensions)
8.2 Example
NB. ... script (ijs) ... NB. ... covariant metric tensor in y coordinates ... g20=:=@i.@#"1 NB. ... contravariant metric tensor in y coordinates ... g02=:=@i.@#"1 NB. ... first derivatives of covariant metric tensor in y coordinates ... dg20dy=:(3 3 3$0:)"1 NB. ... covariant metric tensor in x coordinates ... h20=:(3 3$1,0,0,0,*:@x1,0,0,0,*:@(x1*sin@x2))"1 NB. ... contravariant metric tensor in x coordinates ... h02=:(3 3$1,0,0,0,%@(*:@x1),0,0,0,%@(*:@(x1*sin@x2)))"1 NB. ... first derivatives of covariant metric tensor in x coordinates ... dh20dx0=:9$0: dh20dx1=:0,0,0,(2*x1),0,0,0,0,0: dh20dx2=:0,0,0,0,0,0,(2*x1**:@(sin@x2)),(2**:@x1*sin@x2*cos@x2),0: dh20dx =:(3 3 3$dh20dx0,dh20dx1,dh20dx2)"1
9 Christoffel Symbols (ISS Section 31)
9.1 General
9.2 Example
NB. ... script (ijs) ... NB. ... Christoffel symbols of the first kind in y coordinates ... gC1k=:(3 3 3$0:)"1 NB. ... Christoffel symbols of the second kind in y coordinates ... gC2k=:(3 3 3$0:)"1 NB. ... first derivatives of Christoffel symbols of the second kind in y coordinates ... dgC2kdy=:(3 3 3 3$0:)"1 hCf0=:x1**:@(sin@x2) hCf1=:*:@x1*sin@x2*cos@x2 hCf2=:cos@x2%sin@x2 hCf3=:sin@x2*cos@x2 hC1k0=:0,0,0,0,x1,0,0,0,hCf0 hC1k1=:0,x1,0,-@x1,0,0,0,0,hCf1 hC1k2=:0,0,hCf0,0,0,hCf1,-@hCf0,-@hCf1,0: NB. ... Christoffel symbols of the first kind in x coordinates ... hC1k=:(3 3 3$hC1k0,hC1k1,hC1k2)"1 hC2k0=:0,0,0,0,%@x1,0,0,0,%@x1 hC2k1=:0,%@x1,0,-@x1,0,0,0,0,hCf2 hC2k2=:0,0,%@x1,0,0,hCf2,-@hCf0,-@hCf3,0: NB. ... Christoffel symbols of the second kind in x coordinates ... hC2k=:(3 3 3$hC2k0,hC2k1,hC2k2)"1 hC2kf0=:-@(%@(*:@x1)) hC2kf1=:-@(%@(*:@(sin@x2))) hC2kf2=:-@(*:@(sin@x2)) hC2kf3=:-@(2*x1*sin@x2*cos@x2) hC2kf4=:*:@(sin@x2)-*:@(cos@x2) dhC2kdx00=:9$0: dhC2kdx01=:9$0,0,0,hC2kf0,0,0,0,0,0: dhC2kdx02=:9$0,0,0,0,0,0,hC2kf0,0,0: dhC2kdx10=:9$0,0,0,hC2kf0,0,0,0,0,0: dhC2kdx11=:9$_1,0,0,0,0,0,0,0,0: dhC2kdx12=:9$0,0,0,0,0,0,0,hC2kf1,0: dhC2kdx20=:9$0,0,0,0,0,0,hC2kf0,0,0: dhC2kdx21=:9$0,0,0,0,0,0,0,hC2kf1,0: dhC2kdx22=:9$hC2kf2,hC2kf3,0,0,hC2kf4,0,0,0,0: dhC2kdx0=:dhC2kdx00,dhC2kdx01,dhC2kdx02 dhC2kdx1=:dhC2kdx10,dhC2kdx11,dhC2kdx12 dhC2kdx2=:dhC2kdx20,dhC2kdx21,dhC2kdx22 NB. ... first derivatives of Christoffel symbols of the second kind in x coordinates ... dhC2kdx=:(3 3 3 3$dhC2kdx0,dhC2kdx1,dhC2kdx2)"1
Download: File:LCH0200C.txt
Download: File:LCH0201C.txt
Download: File:LCH0202C.txt
Download: File:LCH0203C.txt
Download: File:LCH0204C.txt
Download: File:LCH0205C.txt
Download: File:LCH0206C.txt
Download MoinMoin source: File:Christoffel02.ijs
Next Page: Essays/Christoffel/Christoffel03
Prev Page: Essays/Christoffel/Christoffel01
Contributed by Tom Allen