Essays/Birthday Problem
What is the probability that n people chosen at random will have some pair of them having the same birthday? We make the following simplifying assumptions:
- There are 365 days in a year.
- A person is equally likely to be born on any day of the year.
For n>:365 , the probability is 1. For n<365 , the probability is 1 minus the probability of the n persons all having distinct birthdays. Thus:
] n=: i.365 NB. number of people 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 ... 365 ^ n NB. number of all arrangements of birthdays 1 365 133225 4.86271e7 1.77489e10 6.47835e12 2.3646e15 8.63078e17 3.15023e20 1.14984e23 4.1969e25 ... (!n) * n!365 NB. number of ways of having n distinct birthdays 1 365 132860 4.82282e7 1.74586e10 6.30256e12 2.26892e15 8.14542e17 2.91606e20 1.04103e23 ... (365^n) %~ (!n) * n!365 NB. probability of having n distinct birthdays 1 1 0.99726 0.991796 0.983644 0.972864 0.959538 0.943764 0.925665 0.905376 0.883052 0.858859 ... ] p=: -. (365^n) %~ (!n)*n!365 NB. probability of some pair having the same birthday 0 0 0.00273973 0.00820417 0.0163559 0.0271356 0.0404625 0.0562357 0.0743353 0.0946238 0.116948 .... 0.5 (< i. 1:) p NB. smallest n for which the probability is at least 0.5 23
The expression for p is problematic computationally for large n (see _30{.p ), because the numerator and the denominator in the division are both extremely large. The problem can be ameliorated with some algebraic simplifications:
(365^n) %~ (!n) * n!365 (365^n) %~ (!n) * (*/@:(365-i.)"0 n) % !n (365^n) %~ */@:(365-i.)"0 n ([: */ 365 %~ 365-i.)"0 n
That is, the probabilities are:
] q=: -. ([: */ 365 %~ 365-i.)"0 n 0 0 0.00273973 0.00820417 0.0163559 0.0271356 0.0404625 0.0562357 0.0743353 0.0946238 0.116948 ... _8 {. q 1 1 1 1 1 1 1 1 _8 {. ([: */ 365 %~ 365-i.)"0 n 1.13677e_141 2.49155e_143 4.77831e_145 7.85476e_147 1.07599e_148 1.17917e_150 9.69182e_153 5.31059e_155 load 'plot' plot n;q
The following are selected values from a table of n , q (some pair having the same birthday), and 1-q (no pair having the same birthday; n distinct birthdays).
t=: 0 0j10 0j10 ": n ,. q ,. (1-q) $t 365 29 (30{.t) ,"1 ' ' ,"1 (100+i.30){t 0 0.0000000000 1.0000000000 100 0.9999996928 0.0000003072 1 0.0000000000 1.0000000000 101 0.9999997769 0.0000002231 2 0.0027397260 0.9972602740 102 0.9999998387 0.0000001613 3 0.0082041659 0.9917958341 103 0.9999998837 0.0000001163 4 0.0163559125 0.9836440875 104 0.9999999166 0.0000000834 5 0.0271355737 0.9728644263 105 0.9999999403 0.0000000597 6 0.0404624836 0.9595375164 106 0.9999999575 0.0000000425 7 0.0562357031 0.9437642969 107 0.9999999698 0.0000000302 8 0.0743352924 0.9256647076 108 0.9999999787 0.0000000213 9 0.0946238339 0.9053761661 109 0.9999999850 0.0000000150 10 0.1169481777 0.8830518223 110 0.9999999895 0.0000000105 11 0.1411413783 0.8588586217 111 0.9999999926 0.0000000074 12 0.1670247888 0.8329752112 112 0.9999999949 0.0000000051 13 0.1944102752 0.8055897248 113 0.9999999965 0.0000000035 14 0.2231025120 0.7768974880 114 0.9999999976 0.0000000024 15 0.2529013198 0.7470986802 115 0.9999999983 0.0000000017 16 0.2836040053 0.7163959947 116 0.9999999988 0.0000000012 17 0.3150076653 0.6849923347 117 0.9999999992 0.0000000008 18 0.3469114179 0.6530885821 118 0.9999999995 0.0000000005 19 0.3791185260 0.6208814740 119 0.9999999996 0.0000000004 20 0.4114383836 0.5885616164 120 0.9999999998 0.0000000002 21 0.4436883352 0.5563116648 121 0.9999999998 0.0000000002 22 0.4756953077 0.5243046923 122 0.9999999999 0.0000000001 23 0.5072972343 0.4927027657 123 0.9999999999 0.0000000001 24 0.5383442579 0.4616557421 124 1.0000000000 0.0000000000 25 0.5686997040 0.4313002960 125 1.0000000000 0.0000000000 26 0.5982408201 0.4017591799 126 1.0000000000 0.0000000000 27 0.6268592823 0.3731407177 127 1.0000000000 0.0000000000 28 0.6544614723 0.3455385277 128 1.0000000000 0.0000000000 29 0.6809685375 0.3190314625 129 1.0000000000 0.0000000000
See also
Contributed by Roger Hui.